Abstract
Effective immunoprophylaxis directed against the pre-erythrocytic stages of the malaria parasite requires a vaccine that can elicit humoral and cell mediated immunity in individuals of diverse genetic background. In order for a synthetic peptide malaria vaccine to meet these requirements, problems associated with genetic restriction, peptide chemistry, adjuvant formulation and physiochemical characterization of the final synthetic vaccine product must first be overcome. To address these issues, five polyoxime vaccine candidates have been constructed by ligating purified peptide epitopes of the P. falciparum CS protein to a branched template via oxime bonds. All five constructs, including two based on templates containing the synthetic adjuvant tripalmitoyl-S-glyceryl cysteine (Pam3Cys), were of sufficient purity for characterization by mass spectrometry. The immunogenicity of the malaria polyoximes in different murine strains was compared to that of multiple antigen peptide (MAP) constructs synthesized by standard step-wise synthesis. A tri-epitope polyoxime-Pam3Cys construct, based on the repeats and a universal T-cell epitope that contains both helper and CTL epitopes of the CS protein, was shown to be a precisely-defined synthetic malaria vaccine candidate that was highly immunogenic in murine strains of diverse H-2 haplotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.