Abstract

Sphingomyelinase (SMase) is one of the principal enzymes in sphingomyelin (SM) metabolism. Here, we identified a Plasmodium falciparum gene (PfNSM) encoding a 46-kD protein, the amino acid sequence of which is ∼25% identical to that of bacteria SMases. Biochemical analyses of the recombinant protein GST-PfNSM, a fusion protein of the PfNSM product with glutathione-S-transferase, reveal that this enzyme retained similar characteristics in various aspects to SMase detected in P. falciparum–infected erythrocytes and isolated parasites. In addition, the recombinant protein retains hydrolyzing activity not only of SM but also of lysocholinephospholipids (LCPL) including lysophosphatidylcholine and lysoplatelet-activating factor, indicating that PfNSM encodes SM/LCPL-phospholipase C (PLC). Scyphostatin inhibited SM/LCPL-PLC activities of the PfNSM product as well as the intraerythrocytic proliferation of P. falciparum in a dose-dependent manner with ID50 values for SM/LCPL-PLC activities and the parasite growth at 3–5 μM and ∼7 μM, respectively. Morphological analysis demonstrated most severe impairment in the intraerythrocytic development with the addition of scyphostatin at trophozoite stage than at ring or schizont stages, suggesting its effect specifically on the stage progression from trophozoite to schizont, coinciding with the active transcription of PfNSM gene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.