Abstract

The human malaria parasite, Plasmodium falciparum possesses unique gliding machinery referred to as the glideosome that powers its entry into the insect and vertebrate hosts. Several parasite proteins including Photosensitized INA-labelled protein 1 (PhIL1) have been shown to associate with glideosome machinery. Here we describe a novel PhIL1 associated protein complex that co-exists with the glideosome motor complex in the inner membrane complex of the merozoite. Using an experimental genetics approach, we characterized the role(s) of three proteins associated with PhIL1: a glideosome associated protein- PfGAPM2, an IMC structural protein- PfALV5, and an uncharacterized protein—referred here as PfPhIP (PhIL1 Interacting Protein). Parasites lacking PfPhIP or PfGAPM2 were unable to invade host RBCs. Additionally, the downregulation of PfPhIP resulted in significant defects in merozoite segmentation. Furthermore, the PfPhIP and PfGAPM2 depleted parasites showed abrogation of reorientation/gliding. However, initial attachment with host RBCs was not affected in these parasites. Together, the data presented here show that proteins of the PhIL1-associated complex play an important role in the orientation of P. falciparum merozoites following initial attachment, which is crucial for the formation of a tight junction and hence invasion of host erythrocytes.

Highlights

  • Invasion of Plasmodium falciparum merozoites during the asexual blood stages is a multistep process that involves initial contact, reorientation, active invasion by gliding motility and resealing [1]

  • The glideosome machinery lies between the plasma membrane and inner membrane complex (IMC) and consists of MyoA, its interacting protein; MTIP, gliding associated proteins (GAPs), and a Photosensitized INA labeled protein (PhIL1)-associated protein complex

  • P. falciparum ALV5, PhIL1 Interacting Protein (PhIP), and GAPM2 proteins co-localize with PhIL1 in the inner membrane complex

Read more

Summary

Introduction

Invasion of Plasmodium falciparum merozoites during the asexual blood stages is a multistep process that involves initial contact, reorientation, active invasion by gliding motility and resealing [1]. Proteins involved in the organization of pellicle/IMC/glideosome include structural proteins such as alveolins (IMC1a-h), glideosome associated protein- 40, -45, and -50 and glideosome associated proteins with multiple membrane spans (GAPMs), ISPs and these proteins together with MTIP (Myosin A tail domain interacting protein) anchor the actomyosin motor complex to the IMC [8,9]. These structures and proteins of glideosome/IMC are important as any disruption in the assembly of IMC blocks parasite invasion as well as sexual stage development [6,10]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call