Abstract

Multiplication of the human malaria parasite Plasmodium falciparum within red blood cells is an energy-dependent process and glucose consumption increases dramatically in infected red blood cells (IRBC) versus normal red blood cells (NRBC). The major pathway for glucose metabolism in P. falciparum IRBC is anaerobic glycolysis. Phosphoglycerate kinase (PGK) is one of the key enzymes of this pathway as it generates ATP. We found that the PGK specific activity in P. falciparum IRBC is seven times higher than that in NRBC. The parasitic origin of the increase in PGK activity is confirmed by isoelectric focusing. Indeed, two P. falciparum isoenzymes with neutral isoelectric points were detected. P. falciparum PGK in purified form has a molecular mass of 48 kDa. Antiserum raised against purified P. falciparum PGK specifically recognizes the 48-kDa protein band in P. falciparum and also reacts with P. berghei and P. yoelii IRBC lysates but does not cross-react with PGK associated with NRBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call