Abstract
The yeast transcriptional coactivator GCN5 (yGCN5), a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcriptional activation. Like other eukaryotes, the malaria parasite DNA is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Here we show that GCN5 is conserved in Plasmodium species and that the most homologous regions are within the HAT domain and the bromodomain. The Plasmodium falciparum GCN5 homologue (PfGCN5) is spliced with three introns, encoding a protein of 1,464 residues. Mapping of the ends of the PfGCN5 transcript suggests that the mRNA is 5.2 to 5.4 kb, consistent with the result from Northern analysis. Using free core histones, we determined that recombinant PfGCN5 proteins have conserved HAT activity with a substrate preference for histone H3. Using substrate-specific antibodies, we determined that both Lys-8 and -14 of H3 were acetylated by the recombinant PfGCN5. In eukaryotes, GCN5 homologues interact with yeast ADA2 homologues and form large multiprotein HAT complexes. We have identified an ADA2 homologue in P. falciparum, PfADA2. Yeast two-hybrid and in vitro binding assays verified the interactions between PfGCN5 and PfADA2, suggesting that they may be associated with each other in vivo. The conserved function of the HAT domain in PfGCN5 was further illustrated with yeast complementation experiments, which showed that the PfGCN5 region corresponding to the full-length yGCN5 could partially complement the yGCN5 deletion mutation. Furthermore, a chimera comprising the PfGCN5 HAT domain fused to the remainder of yeast GCN5 (yGCN5) fully rescued the yGCN5 deletion mutant. These data demonstrate that PfGCN5 is an authentic GCN5 family member and may exist in chromatin-remodeling complexes to regulate gene expression in P. falciparum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.