Abstract

Malaria remains one of the most lethal infectious diseases worldwide, and the most severe form is caused by Plasmodium falciparum. In recent decades, the major challenge to treatment of this disease has been the ability of the protozoan parasite to develop resistance to the drugs that are currently in use. Among P. falciparum enzymes, P. falciparum dihydroorotate dehydrogenase has been identified as an important target in drug discovery. Interference with the activity of this enzyme inhibits de novo pyrimidine biosynthesis and consequently prevents malarial infection. Organic synthesis, x-ray crystallography, high-throughput screening and molecular modeling methods such as molecular docking, quantitative structure-activity relationships, structure-based pharmacophore mapping and molecular dynamics simulations have been applied to the discovery of new inhibitors of P. falciparum dihydroorotate dehydrogenase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.