Abstract

The technique of freeze-fracturing has been used to study the architecture of the pellicular complex of the intraoocyst sporozoite of Plasmodium berghei. The sporozoite is surrounded by three plasma membranes and a layer of subpellicular microtubules. During freeze-fracturing, each of the three membranes can split along its hydrophobic interior to yield a total of six fracture faces. The most obvious feature of each fracture face is the presence of globular intramembranous particles on the surface. The six fracture faces differ from one another in arrangement, size, and density of these intramembranous particles. Two of the fracture faces exhibit a unique arrangement of particles in well-organized parallel rows along the long axis of the sporozoite. This arrangement has not been reported in either the erythrocytic or the exoerythrocytic forms of Plasmodium spp. Another unique feature in the sporozoite revealed through freeze-fracturing is a single suture line that traverses the long axis of the inner two membranes of the parasite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call