Abstract

We report the results of parametric and kinetic studies of the plasmochemical degradation of volatile organic compounds (VOCs) present in respirable atmospheres using a nonthermal ambient-pressure plasma generated in a pin-to-plate capillary plasma electrode (CPE) discharge reactor. Parameters studied included the reactor volume, contaminant residence time, energy density, and influent contaminant concentration. A kinetic model was developed based on a plug-flow regime and a second-order kinetic expression with respect to the reactive plasma species and contaminant concentration. Experimental data were fitted to the proposed model using nonlinear regression techniques, and plasmochemical degradation rate constants were determined for toluene, ethylbenzene, and m-xylene as model compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call