Abstract
Coronavirus disease-19 (COVID-19) is a multisystemic disease that can cause severe illness and mortality by exacerbating symptoms such as thrombosis, fibrinolysis, and inflammation. Plasminogen activator inhibitor-1 (PAI-1) plays an important role in regulating fibrinolysis and may cause thrombotic events to develop. The goal of this study is to examine the relationship between PAI-1 levels and disease severity and mortality in relation to COVID-19. A total of 71 hospitalized patients were diagnosed with COVID-19 using real time-polymerase chain reaction tests. Each patient underwent chest computerized tomography (CT). Data from an additional 20 volunteers without COVID-19 were included in this single-center study. Each patient's PAI-1 data were collected at admission, and the CT severity score (CT-SS) was then calculated for each patient. The patients were categorized into the control group (n=20), the survivor group (n=47), and the non-survivor group (n=24). In the non-survivor group, the mean age was 75.3±13.8, which is higher than in the survivor group (61.7±16.9) and in the control group (59.5±11.2), (p=0.001). When the PAI-1 levels were compared between each group, the non-survivor group showed the highest levels, followed by the survivor group and then the control group (p<0.001). Logistic regression analysis revealed that age, PAI-1, and disease severity independently predicted COVID-19 mortality rates. In this study, it was observed that PAI-1 levels with >10.2 ng/mL had 83% sensitivity and an 83% specificity rate when used to predict mortality after COVID-19. Then, patients were divided into severe (n=33) and non-severe (n=38) groups according to disease severity levels. The PAI-1 levels found were higher in the severe group (p<0.001) than in the non-severe group. In the regression analysis that followed, high sensitive troponin I and PAI-1 were found to indicate disease severity levels. The CT-SS was estimated as significantly higher in the non-survivor group compared to the survivor group (p<0.001). When comparing CT-SS between the severe group and the non-severe group, this was significantly higher in the severe group (p<0.001). In addition, a strong statistically significant positive correlation was found between CT-SS and PAI-1 levels (r: 0.838, p<0.001). Anticipating poor clinical outcomes in relation to COVID-19 is crucial. This study showed that PAI-1 levels could independently predict disease severity and mortality rates for patients with COVID-19.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.