Abstract

Glucocorticoids delay fracture healing and induce osteoporosis. Angiogenesis plays an important role in bone repair after bone injury. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. However, the mechanisms by which glucocorticoids delay bone repair remain unclear. Therefore, we herein investigated the roles of PAI-1 and angiogenesis in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered dexamethasone (Dex). PAI-1 deficiency significantly attenuated Dex-induced decreases in the number of CD31-positive vessels at damaged sites 4days after femoral bone injury in mice. PAI-1 deficiency also significantly ameliorated Dex-induced decreases in the number of CD31- and endomucin-positive type H vessels and CD31-positive- and endomucin-negative vessels at damaged sites 4days after femoral bone injury. Moreover, PAI-1 deficiency significantly mitigated Dex-induced decreases in the expression of vascular endothelial growth factor as well as hypoxia inducible factor-1α, transforming growth factor-β1, and bone morphogenetic protein-2 at damaged sites 4days after femoral bone injury. The present results demonstrate that Dex-reduced angiogenesis at damaged sites during the early bone-repair phase after femoral bone injury partly through PAI-1 in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call