Abstract

Vascular injury induced by angioplasty causes smooth muscle cells to migrate, proliferate, and form a neointima. The neointima is further enlarged by the accumulation of matrix molecules synthesized by smooth muscle cells. Smooth muscle cell migration and matrix accumulation are associated with an increase in the expression of matrix-degrading enzymes and might be regulated by the balance of protease and anti-protease activity. We have studied the inhibitors of two major classes of matrix-degrading enzymes, the plasminogen activators and the matrix metalloproteinases (MMPs) to understand better the regulation of proteolytic activity following balloon catheter injury in the rat carotid artery. At various times after injury, protease inhibitor expression was analyzed by Northern blotting, reverse zymography, immunohistochemistry, and Western blotting. During the first month after injury, we found that the expression of two proteinase inhibitors (plasminogen activator inhibitor type 1 [PAI-1] and tissue inhibitor of metalloproteinases-2 [TIMP-2]) was modulated. PAI-1 mRNA expression reached a maximum 6 hours after injury before tapering off to baseline levels by 3 days. PAI-1 activity, as measured by reverse zymography, followed the same temporal profile. PAI-1, localized by immunohistochemistry, was expressed at low levels in the media of control arteries and was increased after injury primarily in the medial smooth muscle cells. TIMP-2 mRNA levels began to increase 24 hours after injury and reached a maximum at day 7. TIMP-2 activity, measured by reverse zymography, peaked at day 3 after injury. TIMP-2 protein was increased in the intima compared with the media and adventitia at day 7 after injury. The increase of PAI-1 and TIMP-2 after injury supports the hypothesis that changes in the proteolytic balance play an important role in smooth muscle cell migration after arterial injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.