Abstract

Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global pandemic. Although several vaccines targeting SARS-CoV-2 spike proteins protect against COVID-19 infection, mutations affecting virus transmissibility and immune evasion potential have reduced their efficacy, leading to the need for a more efficient strategy. Available clinical evidence regarding COVID-19 suggests that endothelial dysfunction with thrombosis is a central pathogenesis of progression to systemic disease, in which overexpression of plasminogen activator inhibitor-1 (PAI-1) may be important. Here we developed a novel peptide vaccine against PAI-1 and evaluated its effect on lipopolysaccharide (LPS)-induced sepsis and SARS-CoV-2 infection in mice. Administration of LPS and mouse-adapted SARS-CoV-2 increased serum PAI-1 levels, although the latter showed smaller levels. In an LPS-induced sepsis model, mice immunized with PAI-1 vaccine showed reduced organ damage and microvascular thrombosis and improved survival compared with vehicle-treated mice. In plasma clot lysis assays, vaccination-induced serum IgG antibodies were fibrinolytic. However, in a SARS-CoV-2 infection model, survival and symptom severity (i.e., body weight reduction) did not differ between vaccine- and vehicle-treated groups. These results indicate that although PAI-1 may promote the severity of sepsis by increasing thrombus formation, it might not be a major contributor to COVID-19 exacerbation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.