Abstract

We assessed the role of plasminogen activator inhibitor-1 (PAI-1) and matrix metalloproteinase 9 (MMP9) in wound healing process and in the bone marrow mononuclear cells (BMMNC)-related effects on physiological and pathological wound healing. A full thickness excision wound was created by removal of the skin on the midback of irradiated and nonirradiated animals. Angiogenesis and re-epithelialization were markedly increased in PAI-1-/- mice compared to wild-type (WT) animals. We revealed high MMP activity in tissue of PAI-1-/- animals. Of interest, the wound healing process was reduced in PAI-1-/-:MMP9-/- animals compared to PAI-1-/- mice, suggesting a key role of MMP9 in beneficial effect of PAI-1 deficiency on wound closure. To unravel the role of PAI-1 in BMMNC relative effects, mice were treated with or without local injection of BMMNC isolated from WT, PAI-1-/-, and PAI-1-/-: MMP9-/- animals for 14 days (10(6) cells, n = 6 per group). In WT nonirradiated mice, transplantation of BMMNC isolated from PAI-1-/- animals enhanced wound formation when compared with WT BMMNC. BMMNC differentiation into cells with endothelial phenotype was enhanced by PAI-1 deficiency. These effects were abrogated in PAI-1-/-:MMP9-/- and MMP9-/- BMMNC. In addition, using chimeric mice, we demonstrated that PAI-1 deficiency environment increased the BMMNC-GFP recruitment to the wound site, whereas this effect was abrogated when using PAI-1-/-:MMP9-/- BMMNC. PAI-1 deficiency, at least through MMP9 upregulation, enhanced wound healing and BMMNC therapeutic potential in irradiated and nonirradiated animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call