Abstract

Cell growth and enzyme (alpha-amylase) production characteristics of Bacillus subtilis TN106 containing the recombinant plasmid pAT5 are investigated in batch and continuous cultures using a defined medium with glucose as the limiting nutrient. The batch culture studies demonstrate that the recombinant plasmid, reported earlier(1) to be stably maintained in the host, suffers from segregational and structural instabilities. The structural instability of this strain occurred during culture storage and can be eliminated in bioreactor experiments by using a modified inoculum preparation procedure. Such elimination allows an unbiased investigation of segregational instability via continuous culture studies. Such studies conducted with this fast growing microorganism, in the absence of antibiotic selection pressure, indicate a very efficient glucose utilization (very low residual glucose concentrations) over a wide range of dilution rates (0.16 h(-1) - 0.94 h(-1)). The nearly time-invariant and low residual glucose concentrations at each such dilution rate enable convenient estimation of growth parameters of the host and recombinant cells and frequency of segregational instability from transients in the resulting mixed cultures. The specific alpha-amylase activity exhibits an inverse relationship to the specific growth rate of recombinant cells. The growth of recombinant cells is not affected by the presence of antibiotic (kanamycin). The growth advantage of host cells over recombinant cells diminishes with increasing dilution rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call