Abstract

Transfection of mammalian cells with genomic DNA and cloned genes is now relatively routine. However, the vast majority of studies have used rodent cells as recipients. Here we describe efficient transfection of two human cell lines, the hypoxanthine guanine phosphoribosyltransferase (HPRT)-deficient HeLa line, D98/AH-2, and the adenine phosphoribosyltransferase (APRT)-deficient HT1080 line, HTD114. D98/AH-2 cells were transfected with the pSV2-gpt plasmid of Mulligan and Berg, which contains the E. coli xanthine-guanine phosphoribosyltransferase (gpt) gene, and Gpt + transfectants were selected in HAT medium. HTD114 cells were transfected with (1) genomic hamster DNA, and ouabain resistant transfectants were selected in 5 X 10(-7)M ouabain; (2) with hamster and mouse genomic DNA, and Aprt + cells were selected in AAA medium; (3) with plasmids containing either the cloned hamster or mouse APRT genes, and Aprt + cells were selected; and (4) with phage particles containing a cloned mouse APRT gene, and Aprt + cells were selected. Transfection efficiencies ranged from 0.25 to 1.5 X 10(3) transfectants per microgram DNA, and in certain cases secondary transfections were done. Foreign DNA in recipients was detected by blot hybridization, and the expression of foreign genes was detected by cell growth in selective media and the expression of enzymes characteristic of the species of the donor DNA. The majority of transfectants showed stable expression of the transgenome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.