Abstract
Prokaryotes can exchange chromosomal and plasmid genes via extracellular DNA in a process termed genetic transformation. This process has been observed in the test tube for several bacterial species living in the environment but it is not clear whether transformation occurs in natural bacterial habitats. A major constituent of terrestrial environments are solid particles such as quartz, silt and clay, which have considerable surface areas and which make up the solid-liquid interfaces of the habitat. In previous experiments the adsorption of DNA to chemically purified quartz and clay minerals was shown and the partial protection of adsorbed DNA against DNAase I. In a microcosm consisting of natural groundwater aquifer material (GWA) sampled directly from the environment and groundwater (GW) both linear duplex and supercoiled plasmid DNA molecules bound rapidly and quantitatively to the minerals. The divalent cations required to form the association were those present in the GWA/GW microcosm. The association was stable to extended elution over one week at 23 degrees C. Upon adsorption, the DNA became highly resistant against enzymatic degradation. About 1000 times higher DNAase I concentrations were needed to degrade bound DNA to the same extent as DNA dissolved in GW. Furthermore, chromosomal and plasmid DNA bound on GWA transformed competent cells of Bacillus subtilis. However, in contrast to DNA in solution, on GWA the chromosomal DNA was more active in transformation than the plasmid DNA. The studies also revealed that in the transformation of B. subtilis Mg2+ can be replaced by Na+, K+ or NH4+. The observations suggest that in soil and sediment environments, mineral material with inorganic precipitates and organic matter can harbour extracellular DNA leaving it available for genetic transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.