Abstract

P1 lysogens of Escherichia coli carry the prophage as a stable low copy number plasmid. The frequency with which viable cells cured of prophage are produced is about 10 -5 per cell per generation. Here we show that a significant part of this remarkable stability can be attributed to a plasmid encoded mechanism that causes death of cells that have lost P1. In other words, the lysogenic cells appear to be addicted to the presence of the prophage. The plasmid withdrawal response depends on a gene named doc ( death on curing), encoding a 126 amino acid protein. Expression of doc is not SOS-inducing and killing by Doc is recA -independent. In cells that, retain P1 the killing is prevented by the product of a gene named phd ( prevent host d eath), encoding a 73 amino acid protein. The genes phd and doc have been cloned and expressed from a 0·7 kb segment of P1 DNA. The two genes constitute an operon and the synthesis of Doc appears to be translationally coupled to that of Phd. Homologs of the P1 addiction genes are found elsewhere, but phd and doc are unrelated to previously described genes of other plasmids that also cause an apparent increase in plasmid stability by post-segregational killing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.