Abstract

We present a detailed experimental characterization of ultra-thin platinum-oxide films formed on metallic Pt surfaces using O2 plasma treatment. A monotonic consumption of the metallic Pt by the O2 plasma is demonstrated by electrical resistance measurements of micron-wide, ultra-thin metallic Pt wires for the range of O2 plasma exposure times explored in this study. Conversely, angle-resolved X-ray photoelectron spectroscopy (AR-XPS) of the plasma-treated Pt reveals that the oxide layer formed on the Pt surface maintains a constant thickness over these exposure times. In combination, these data demonstrate that the O2 plasma treatment of Pt simultaneously forms and etches an ultra-thin platinum-oxide layer on the Pt surface. In addition, the AR-XPS data also reveals the oxide layer to be composed of two different platinum–oxygen compounds. Detailed analysis demonstrates a stratified structure for the ultra-thin platinum oxide, with the oxide ‘bulk’ being composed of PtO2, likely with PtO defects, and the exposed oxide surface being Pt(OH)y≈2 terminated after exposure to ambient conditions. The potential utility of using plasma oxidization to form ultra-thin platinum (or other metal) oxide films on nanoscale metal structures for nano- and molecular-electronic applications is discussed, along with other promising applications in technologies such as sensors and catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.