Abstract

In this study, steam reforming of toluene was carried out in a dielectric barrier discharge (DBD) plasma reactor combined with Ni/γ-Al2O3 catalysts. The effect of reaction temperature, calcination temperature of catalysts, and relative permittivity of packing materials, on the reaction performance and synergistic effect of plasma catalysis was investigated. The results showed that toluene conversion decreased initially and then increased with increasing temperature, due to a decreasing average reduced electric field and increasing catalytic activity at higher temperatures. At 450 °C, the process achieved a high toluene conversion of 87.1%, a total gas yield of 72.6%, and an energy efficiency of 18.2 g/kWh, demonstrating the potential of this approach for sustainable hydrogen production. Catalysts prepared at lower calcination temperatures or with higher relative permittivity packing materials perform better, owing to the larger Ni surface area available for catalytic reactions and the higher surface discharge facilitating the occurrence of surface reactions. In addition, the synergistic capacity in terms of toluene conversion and gas production exhibited a positive relationship with the metal surface area of catalysts and the relative permittivity of packing materials, while the relationship between reaction temperature and toluene conversion was negative.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call