Abstract

Invariant NKT (iNKT)-cell stimulation with exogenous specific ligands prevents the development of type 1 diabetes (T1D) in NOD mice. Studies based on anti-islet T-cell transfer showed that iNKT cells prevent the differentiation of these Tcells into effector Tcells in the pancreatic lymph nodes (PLNs). We hypothesize that this defective priming could be explained by the ability of iNKT cells to induce tolerogenic dendritic cells (DCs) in the PLNs. We evaluated the effect of iNKT-cell stimulation on T1D development by transferring naïve diabetogenic BDC2.5 Tcells into proinsulin 2(-/-) NOD mice treated with a long-lasting α-galactosylceramide regimen. In this context, iNKT cells induce the conversion of BDC2.5 Tcells into Foxp3(+) Treg cells in the PLNs accumulating in the pancreatic islets. Furthermore, tolerogenic plasmacytoid DCs (pDCs) characterized by low MHC class II molecule expression and TGF-β production are critical in the PLNs for the recruitment of Treg cells into the pancreatic islets by inducing CXCR3 expression. Accordingly, pDC depletion in α-galactosylceramide-treated proinsulin 2(-/-) NOD mice abrogates the protection against T1D. These findings reveal that upon repetitive iNKT-cell stimulation, pDCs are critical for the recruitment of Treg cells in the pancreatic islets and the prevention of T1D development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call