Abstract

Purpose Reynolds number in small-size low-pressure turbines (LPT) can drop below 2.5 · 104 at high altitude cruise, which in turn can lead to laminar boundary layer separation on the suction surface of the blades. The purpose of this paper is to investigate the potential of an alternate current (AC)-driven Single Dielectric Barrier Discharge Plasma Actuator (AC-SDBDPA) for boundary layer control on the suction side of a LPT blade, operating at a Reynolds number of 2 · 104.Design/methodology/approach Experimental and numerical analyses were conducted. The experimental approach comprised the actuator testing over a curved plate with a shape designed to reproduce the suction surface of a LPT blade. A closed loop wind tunnel was employed. Sinusoidal voltage excitation was tested. Planar velocity measurements were performed by laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). The device electrical power dissipation was also calculated. Computational fluid dynamics (CFD) simulations using OpenFOAM© were conducted, modelling the actuator effect as a body force calculated by the dual potential algebraic model. Unsteady RANS (Reynolds Averaged Navier-Stokes equations), also known as URANS approach, with the k-ε Lam-Bremhorst Low-Reynolds turbulence model was used.Findings The AC-SDBDPA operation brought to a reduction of the separation region; in particular, the boundary layer thickness and the negative velocity values decreased substantially. Moreover, the flow angle in both the main flow and in the boundary layer was reduced by the plasma control effect. The actuation brought to a reduction of the 17 per cent in the total pressure loss coefficient. The pressure coefficient and skin friction coefficient distributions indicated that under actuation the reattacnment point was displaced upstream, meaning that the flow separation was effectively controlled by the plasma actuation. Adopting slightly higher actuation parameters could bring to a full reattachment of the flow.Practical implications The work underlines the potentialities of an AC-SDBDPA to control separation in LPTs of aeroengines.Originality/value The present work sets a methodological framework, in which the validated procedure to obtain the body force model combined with CFD simulations can be used to study a configuration with multiple actuators allocated in array without requiring further experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call