Abstract

The resistance to oxidation and optical properties of a hot-pressed ZrB 2–SiC composite were studied under aero-thermal heating in a strongly dissociated flow that simulates hypersonic re-entry conditions. Ultra-high temperature ceramic models with a blunt or sharp profile were exposed to high enthalpy flows of an N 2/O 2 gas mixture up to 10 MJ/kg for a full duration of 540 s, the surface temperatures approaching 2100 K. Stagnation-point temperatures as well as spectral emissivities were directly determined using an optical pyrometer. Microstructural features of the oxidized layers were correlated to optical properties through computational fluid dynamics calculations which allow for numerical rebuilding of key parameters like surface temperatures, wall heat fluxes, shear stresses or concentrations of the species composing the reacting gas mixture. Gradients of temperature on the surfaces facing the hot gas flow established different boundary conditions that led to the formation and evolution of distinct layered oxide scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.