Abstract

Laser-plasma accelerators have become compact sources of ultrashort electron bunches at energies up to the gigaelectronvolt range thanks to the remarkable progress made over the past decade. A direct application of these electron bunches is the production of short pulse x-ray radiation sources. In this letter, we study a fully optically driven x-ray source based on the combination of a laser-plasma accelerator and a plasma wave undulator. The longitudinal electric field of a laser-generated plasma wave is used to wiggle electrons transversally. The period of this plasma undulator being equal to the plasma wavelength, tunable photon energies in the 10 keV range can be achieved with electron energies in the 100–200 MeV range. Considering a 10s TW class femtosecond laser system, undulators with a strength parameter K∼0.5 and with about ten periods can be combined with a laser-plasma accelerator, resulting in several 10−2 emitted x-ray photons per electron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.