Abstract

This paper introduces the concept of plasma-wall self-organization (PWSO) in magnetic fusion. The basic idea is the existence of a time delay in the feedback loop relating radiation and impurity production on divertor plates. Both a zero and a one-dimensional description of PWSO are provided. They lead to an iterative equation whose equilibrium fixed point is unstable above some threshold. This threshold corresponds to a radiative density limit, which can be reached for a ratio of total radiated power to total input power as low as 1/2. When detachment develops and physical sputtering dominates, this limit is progressively pushed to very high values if the radiation of non-plate impurities stays low. Therefore, PWSO comes with two basins for this organization: the usual one with a density limit, and a new one with density freedom, in particular for machines using high-Z materials. Two basins of attraction of PWSO are shown to exist for the tokamak during start-up, with a high density one leading to this freedom. This basin might be reached by a proper tailoring of ECRH assisted ohmic start-up in present middle-size tokamaks, mimicking present stellarator start-up. In view of the impressive tokamak DEMO wall load challenge, it is worth considering and checking this possibility, which comes with that of more margins for ITER and of smaller reactors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.