Abstract

Blood volume (51Cr-erythrocyte dilution method), hematocrit, and arterial (Pa), central venous (Pv), plasma colloid osmotic (IIpl), and interstitial fluid hydrostatic (Pcps, Guyton's capsule method) pressures were measured continuously to determine the kinetics of the transvascular fluid shift during 100 min of water immersion (WI) at 37 degrees C in six splenectomized dogs. Urine flow increased by 180% above control levels (P less than 0.05) by 30 min of WI. Plasma volume (PV) started to increase at 5 min of WI and rose by 7.2% (P less than 0.05) above control levels by 35 min of WI, and then it decreased gradually. PV returned to control levels immediately after WI. Plasma protein concentration and IIpl decreased significantly by 0.2 g/100 ml and 1.2 mmHg, respectively, at 35 min of WI, while plasma osmolality and Na+ concentration were constant. Pa and Pv increased (P less than 0.05) by 25 and 12 mmHg, respectively. Mean capillary pressure, which was calculated from Pa, Pv, and an estimated pre-to-postcapillary resistance ratio of 5-12, increased by 13-14 mmHg while Pcps increased (P less than 0.05) by 17 and 26 mmHg at upper hindlimb and lower forelimb, respectively. The changes in mean capillary pressure and IIpl tend to promote capillary filtration in WI; however, the greater elevation of Pcps more than offsets these forces and leads to a net transvascular shift into the plasma compartment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.