Abstract

A four-electrode plasma based triggered spark gap switch is designed for pulsed power applications, which consists of an anode and cathode of a main spark gap switch and an anode and cathode for a trigger pin. The anode and cathode of the trigger pin are coaxially arranged, and the gap between electrodes is 25 μm. A trigger voltage of 200 V is applied across the trigger gap with the help of a switching insulated gate bipolar transistor. With the breakdown of the trigger gap, plasma is generated, which is injected into the main gap. The trigger pin is placed axisymmetric to the main spark gap in the cathode. The main discharge channel of the spark gap has 0.6 mm space between two electrodes, which is charged to 1000 V. When the spark gap is triggered, the discharge current has a peak value of 6.1 kA with a quarter cycle time period of 0.97 µs. The four-electrode spark gap switch results are compared with those of a three-electrode trigatron switch, which has the peak current of 6 kA with 1.01 µs as quarter-cycle time period. Four similar four-electrode spark gap switches are triggered with the same scheme and synchronized within 10 ns as peak values of currents with jitter as less than 5 ns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.