Abstract

We fabricate aluminum cathodes that are almost free from plasma damage by DC magnetron sputtering for organic light-emitting diodes (OLEDs). While sputtering is widely known to have numerous advantages over conventional evaporation for mass production of devices, it can cause serious damage to organic layers. In this report, we fabricate devices that are free from plasma damage by introducing a 1%-Li-doped electron transport layer (ETL). The difference of external electroluminescence quantum efficiency between OLEDs with the structure ITO/α-NPD/ETL/Al (where ITO is indium tin oxide and α-NPD is N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine) with Al cathodes deposited by conventional evaporation or sputtering is 0.1%, and their driving voltage is identical. We find that the Li-doped ETL should be thicker than 40nm. Analysis of the depth profile of the ETL by time-of-flight secondary ion mass spectrometry indicates that considerable damage from sputtering extended to a depth of approximately 30nm, suggesting that high-energy particles penetrated about 30nm into the ETL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.