Abstract

Fabricating micro/nano-features in devices and largescale production with short lead times is challenging, and many individual and hybrid processes have been developed to meet this challenge. Among nonconventional processes, micro-electric discharge machining (µ-EDM) has many advantages due to the possibility of precise and accurate 2D and 3D machining of complex shapes. Dry µ-EDM is used to process assembled or semi-assembled products. Attempts are being made to improve the µ-EDM process, and further improvement is possible through better understanding the role of discharge plasma in the machining process. We studied plasma and crater characteristics during dry µ-EDM, calculating plasma parameters for different discharge energies using optical emission spectroscopy. Line pair method and modified Saha equations are used to calculate plasma temperature and electron density respectively. Craters were morphologically analyzed using scanning electron microscopy (SEM), and plasma and crater characteristics on stainless steel and silicon were compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.