Abstract
While silicon's optical properties are improved at the nanoscale, they also become highly sensitive to the properties of the surfaces and interfaces of silicon nanostructures. For instance, while reported quantum yields for photoluminescence of silicon quantum dots covered by a native oxide are often in the few percent range, quantum yields as high as 30% have been found in quantum dots whose surfaces were passivated by covalently bonded organic molecules. In this paper, we describe an approach that is based on the gas phase synthesis of silicon quantum dots in a nonthermal plasma, and the subsequent organic surface passivation in the liquid phase. Nanocrystals are formed within a few milliseconds with a high mass yield in a nonthermal plasma. Various organic ligands such as octadecene, dodecence, and styrene are grafted onto the nanocrystal surfaces in a reaction known as hydrosilylation. Materials are characterized through transmission electron microscopy, atomic force microscopy, and fluorescence measurements. The particle size distributions are found to be relatively monodisperse and are well controllable through the plasma process parameters. Photoluminescence quantum yields as high as 60–70% have been achieved for particles luminescing in the red range of the visible spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.