Abstract

The titanium affinity for oxygen is one of the main factors that limit the application of its alloys as structural materials at high temperatures. The objective of this work was to estimate the influence of the plasma-sprayed coatings for oxidation protection on creep of the Ti–6Al–4V alloy, focusing on the determination of the experimental parameters related to the creep stages. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was air plasma sprayed on Ti–6Al–4V substrates. Constant load creep tests were conducted on the Ti–6Al–4V alloy in air for coated and uncoated samples and in a nitrogen atmosphere for uncoated samples at 600°C to evaluate the oxidation protection on creep of the Ti–6Al–4V alloy. The steady-state creep rate of the coated alloy is smaller than that of the uncoated alloy in air and nitrogen atmosphere. Results about the activation energies and the stress exponent values indicate that the primary and stationary creep, for all test conditions, was probably controlled by dislocation climb. The plasma-sprayed coatings increased the time to rupture and the strain at rupture is smaller than for uncoated samples tested in air.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.