Abstract

Direct carbon fuel cells (DCFC) that employ solid oxide electrolytes and liquid antimony (Sb) anodes are efficient electrochemical cells for converting various types of solid carbon fuels directly into power. Though the liquid Sb anode exhibits decent performance, electrolyte corrosion by molten Sb2O3 during fuel cell operation has long been an issue. The present study investigates the behavior of scandia stabilized zirconia (ScSZ) electrolytes fabricated through different approaches in liquid antimony anode DCFCs. As for conventional sintered ScSZ electrolyte, we observed severe electrolyte corrosion by molten Sb2O3, which agrees with previous reports. In contrast, corrosion or thinning by the oxide was not detected in ScSZ electrolyte prepared with atmospheric plasma spray (APS) technology. Both electrochemical testing and microscopic characterization results suggest that plasma spray is a promising method to prepare robust electrolytes for liquid antimony anode based DCFCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.