Abstract

Alterations of somatostatin-like immunoreactivity (SST-LI) in the plasma of 11 systemic inflammatory response syndrome (SIRS) patients were investigated in correlation with cytokines, adhesion molecules and coagulation markers repeatedly during 4 days. The origin and role of SST were studied in the cecum ligation and puncture (CLP) rat SIRS model. Capsaicin-sensitive peptidergic sensory nerves were defunctionalized by resiniferatoxin (RTX) pretreatment 2 weeks earlier, in a separate group animals were treated with the somatostatin receptor antagonist cyclo-somatostatin (C-SOM). Plasma SST-LI significantly elevated in septic patients compared to healthy volunteers during the whole 4-day period. Significantly decreased Horowitz score showed severe lung injury, increased plasma C-reactive protein and procalcitonin confirmed SIRS. Soluble P-selectin, tissue plasminogen activator and the interleukin 8 and monocyte chemotactic protein-1 significantly increased, interleukin 6 and soluble CD40 ligand did not change, and soluble Vascular Adhesion Molecule-1 decreased. SST-LI significantly increased in rats both in the plasma and the lung 6h after CLP compared to sham-operation. After RTX pretreatment SST-LI was not altered in intact animals, but the SIRS-induced elevation was absent. Lung MPO activity significantly increased 6h following CLP compared to sham operation, which was significantly higher both after RTX-desensitization and C-SOM-treatment. Most non-pretreated operated rats survived the 6h, but 60% of the RTX-pretreated ones died showing a significantly worse survival. This is the first comprehensive study in humans and animal experiments providing evidence that SST is released from the activated peptidergic sensory nerves. It gets into the bloodstream and mediates a potent endogenous protective mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.