Abstract
The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length in the SOL is numerically computed and its dependence on , Δ, κ, and δ is analyzed, showing that stabilization of RBMs results in shorter Lp. An analytical estimate of Lp in the infinit aspect ratio limit and neglecting the Shafranov’s shift is also derived. Nonlinear SOL turbulence simulations with non-circular magnetic geometries are carried out using the global, three-dimensional, flux-driven fluid code GBS (Ricci et al 2012 Plasma Phys. Control. Fusion 54 124047) and the results are compared with the findings obtained from the linear analysis of the SOL instabilities, showing good quantitative agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.