Abstract

ABSTRACT A reliable description of nuclear fusion reactions in inner layers of white dwarfs and envelopes of neutron stars is important for realistic modelling of a wide range of observable astrophysical phenomena from accreting neutron stars to Type Ia supernovae. We study the problem of screening of the Coulomb barrier impeding the reactions by a plasma surrounding the fusing nuclei. Numerical calculations of the screening factor are performed from the first principles with the aid of quantum-mechanical path integrals in the model of a one-component plasma of atomic nuclei for temperatures and densities typical for dense liquid layers of compact degenerate stars. We do not rely on various quasi-classic approximations widely used in the literature, such as factoring out the tunnelling process, tunnelling in an average spherically symmetric mean-force potential, usage of classic free energies and pair correlation functions, linear mixing rule, and so on. In general, a good agreement with earlier results from the thermonuclear limit to Γ ∼ 100 is found. For a very strongly coupled liquid 100 ≲ Γ ≤ 175, a deviation from currently used parametrizations of the reaction rates is discovered and approximated by a simple analytic expression. The developed method of nuclear reaction rate calculations with account of plasma screening can be extended to ion mixtures and crystallized phases of stellar matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call