Abstract

Hemorrhagic shock (HS) and resuscitation (RES) cause ischemia-induced intestinal permeability due to intestinal barrier breakdown, damage to the endothelium, and tight junction (TJ) complex disruption between enterocytes. The effect of hemostatic RES with blood products on this phenomenon is unknown. Previously, we showed that fresh frozen plasma (FFP) RES, with or without directed peritoneal resuscitation (DPR) improved blood flow and alleviated organ injury and enterocyte damage following HS/RES. We hypothesized that FFP might decrease TJ injury and attenuate ischemia-induced intestinal permeability following HS/RES. Sprague-Dawley rats were randomly assigned to groups (n = 8): sham; crystalloid resuscitation (CR) (HS of 40% mean arterial pressure for 60 minutes) and CR (shed blood plus two volumes of CR); CR and DPR (intraperitoneal 2.5% peritoneal dialysis fluid); FFP (shed blood plus one volume of FFP); and FFP and DPR (intraperitoneal dialysis fluid plus two volumes of FFP). Fluorescein isothiocyanate-dextran (molecular weight, 4 kDa; FD4) was instilled into the gastrointestinal tract before hemorrhage; FD4 was measured by UV spectrometry at various time points. Plasma syndecan-1 and ileum tissue TJ proteins were measured using enzyme-linked immunosorbent assay. Immunofluorescence was used to visualize claudin-4 concentrations at 4 hours following HS/RES. Following HS, FFP attenuated FD4 leak across the intestine at all time points compared with CR and DPR alone. This response was significantly improved with the adjunctive DPR at 3 and 4 hours post-RES (p < 0.05). Resuscitation with FFP-DPR increased intestinal tissue concentrations of TJ proteins and decreased plasma syndecan-1. Immunofluorescence demonstrated decreased mobilization of claudin-4 in both FFP and FFP-DPR groups. Fresh frozen plasma-based RES improves intestinal TJ and endothelial integrity. The addition of DPR can further stabilize TJs and attenuate intestinal permeability. Combination therapy with DPR and FFP to mitigate intestinal barrier breakdown following shock could be a novel method of reducing ischemia-induced intestinal permeability and systemic inflammation after trauma. Prognostic/Epidemiologic, Level III.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call