Abstract

Background: Hyperlipidemia {hypercholesterolemia [cholesterol >5.18 mmol/L) or hypertriglyceridemia [triglycerides >2.3 mmol/L], mixed hyperlipidemia [cholesterol >5.18 mmol/L and triglycerides >2.3 mmol/L], and high low-density lipoproteinemia [low-density lipoprotein (LDL) >3.4 mmol/L]} is a strong risk factor for arteriosclerosis and cardiovascular disease (CVD). Therapy with lipid-lowering drugs often results in many side effects. Our study aimed to investigate the potential effects of non-drug therapy with double-filtration plasmapheresis (DFPP) on lipid metabolism-, endoplasmic reticulum (ER) stress-, and apoptosis-related proteins in peripheral blood mononuclear cells (PBMCs) before and after lipid clearance in patients with hyperlipidemia.Methods: Thirty-five hyperlipidemia patients were selected. Proteins related to lipid metabolism [CD36, proprotein convertase subtilisin/kexin type 9 (PCSK9), and LDL receptor], ER stress [glucose-regulated protein 78 (Grp78), C/EBP homologous protein (CHOP), activating transcription factor 4 (ATF4), and eukaryotic initiation factor 2α (EIF2α)], and apoptosis [B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (BAX), and cysteinyl aspartate specific proteinase-3 (Caspase-3)] were assayed by Western blot, reactive oxygen species (ROS) were measured by flow cytometry (FCM), and ELISA detected serum inflammatory [interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNF-α)] factors.Results: Compared with their pre-DFPP values, the values of most lipid metabolic parameters, such as cholesterol, triglycerides, LDL, lipoprotein a [Lp(a)], and small dense LDL (sdLDL) cholesterol, were reduced after DFPP. DFPP was associated with the downregulation of proteins related to lipid metabolism, ER stress, and apoptosis, resulting in decreased ROS and serum inflammatory factor release.Conclusion: DFPP has lipid-lowering activity and can also regulate lipid metabolism-, ER stress-, and apoptosis-related proteins in PBMCs and reduce the levels of inflammatory factors in patients with hyperlipidemia (ClinicalTrials.gov number: NCT03491956).

Highlights

  • Hyperlipidemia is one of the most important factors associated with cardiovascular disease (CVD) and often results in fatty liver, cerebral thrombosis and/or infarction, and severe pancreatitis [1,2,3,4]

  • double-filtration plasmapheresis (DFPP) Is Associated With Changes in Lipid Metabolism-Related Proteins

  • Our study indicates that DFPP can effectively reduce the levels of lipids, such as low-density lipoprotein (LDL)-C, cholesterol, triglycerides, Lp(a), and sdLDL cholesterol, a finding similar to that of a previous study [15]

Read more

Summary

Introduction

Hyperlipidemia is one of the most important factors associated with cardiovascular disease (CVD) and often results in fatty liver, cerebral thrombosis and/or infarction, and severe pancreatitis [1,2,3,4]. CD36 expression was abnormal, and increased CD36 expression could result in endoplasmic reticulum (ER) stress, macrophage apoptosis, insulin resistance, and CVD [8]. Another important lipid metabolic protein, proprotein convertase subtilisin/kexin type 9 (PCSK9), is mainly expressed in the liver, intestinal tract, and kidney [9]. Our study aimed to investigate the potential effects of non-drug therapy with double-filtration plasmapheresis (DFPP) on lipid metabolism-, endoplasmic reticulum (ER) stress-, and apoptosis-related proteins in peripheral blood mononuclear cells (PBMCs) before and after lipid clearance in patients with hyperlipidemia

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call