Abstract

BackgroundStroke is a major cause of death and disability in the United States. Mechanical thrombectomy (MT) and tissue plasminogen activator are the current treatments for ischemic stroke, which have improved clinical outcomes. Despite these treatments, functional and cognitive deficits still occur demonstrating a need for predictive biomarkers for beneficial clinical outcomes which can be used as therapeutic targets for pharmacotherapy. The aim of this study compares the proteomic expression of systemic arterial blood collected at the time of MT to those from a matched cerebrovascular disease (CVD) control cohort. MethodsThe Blood And Clot Thrombectomy Registry And Collaboration (BACTRAC) (clinicaltrials.gov NCT03153683) collects and banks arterial blood, both distal and proximal to the thrombus, from ischemic stroke subjects undergoing MT. Arterial blood from patients undergoing a diagnostic angiogram was also collected and banked as CVD controls. Changes in cardiometabolic and inflammatory proteins between stroke and CVD controls were analyzed via Olink Proteomics. ResultsProteins including ARTN, TWEAK, HGF, CCL28, FGF-5, CXCL9, TRANCE and GDNF were found to be decreased in stroke subjects when compared to CVD controls. CXCL1, CCL5, OSM, GP1BA, IL6, MMP-1, and CXCL5 were increased in stroke subjects when compared to CVD controls. These proteins were also significantly correlated to stroke outcome metrics such as NIHSS, infarct volume and MoCA scoring. ConclusionOverall, acute stroke patients had an increase in inflammatory proteins with a decrease in trophic proteins systemically compared to matched CVD controls. Using our CVD controls, proteins of interest were directly compared to stroke patients with the same cerebrovascular risk factors instead of statistically controlling for comorbidities. The novel methodology of matching an arterial blood CVD control group to a stroke group, as well as controlling for age and comorbid status add to the literature on prognostic stroke biomarkers, which are specific targets for future therapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.