Abstract

A statistical study of the cusp plasma has been performed using mainly electron data from the LPS, Rome, plasma experiment flown onboard HEOS-2. We have located the cusp by means of 35–50 eV electrons, from 1.5 to 2.5 R E (south pole) and from 3 R E up to 11 R E (north pole) at 60–70° SM latitude within ±60° of SM longitude from the noon meridan plane. The average cusp thickness is 4.2° of invariant latitude. The location of the cusp in invariant latitude around the noon meridian plane depends on the IMF component B zGSM according to the linear best fit: Λ = 78.7° + 0.48 B z GSM( γ). Away from the noon meridian plane the invariant latitude of the cusp decreases from 79–84° to 70–74° (at ±50° SM Longitude). At the equatorward edge of the north pole cusp, at all radial distances and at all SM longitudes, we have found a population of electrons with a harder energy spectrum than in the cusp itself. These electrons show a peak at 170–280 eV in our data. They are not the cusp (35–50 eV) electrons and are easily distinguishable from the 1 keV magnetospheric electrons. In the south pole auroral oval they are found at any SM longitude mainly poleward of the 1 keV electrons. The cusp electrons (35–50 eV) and protons have anisotropies that vary with radial distance and SM latitude, both flowing earthward more or less along the magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call