Abstract

A number of in-situ cosmic dust detectors derive the dust particle velocities from measurement of the risetimes of the impact plasma signal. Extensive calibration of these instruments has established a reliable empirical relationship but a quantitative explanation has not been available, with the result that confidence in flight data outside the range of the calibration data is hard to assess. Recent measurements taken at the dust accelerator facilities at the University of Kent (UK) and at MPI-K (Germany), supported by a theoretical analysis, have demonstrated that the relationship results from the time-spread of secondary impacts coupled with the mobility of ions in the impact plasma cloud, which is in turn determined by the magnitude and geometry of the applied electric field and on the ion species present. Results of the current investigations are presented, and the implications of measurements based on this principle at high particle velocities, at masses unobtainable in calibration studies, and for other instrument geometries, are considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call