Abstract

We recently introduced a new class of high performance deep-UV photoresists which are deposited via the gas phase plasma polymerization of methylsilane. These materials, particularly plasma polymerized methylsilane (PPMS), undergo efficient oxidation on exposure to deep-UV light in air to form a glasslike siloxane network polymer, providing patterns which may be developed and transferred into underlying substrates using all dry plasma etch processes. Here we describe a simple new procedure which affords the opposite (positive) tone image in the same resist using a wet buffered oxide etch to remove exposed regions. Lithographic performance studies (dose latitude as well as linearity data) are presented for both the negative tone and the new positive tone versions of the process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.