Abstract

At first, we present a brief review of the problem. Then, we consider plasma phase transition (PPT) as a mechanism of the first order fluid–fluid phase transition in warm dense hydrogen. The pros and cons are analysed. The properties of warm dense hydrogen are investigated by ab initio methods of molecular dynamics using the density functional theory. Strong ionization during the fluid–fluid phase transition in warm dense hydrogen makes this transition close to the prediction of the PPT. Finally, we present differences in the real phase transition from the prediction 1968–1969. Structures are observed with inter‐proton separations that are equal to the distances between protons in the and ions. The transition is not only ionization, but also structural. An analysis of the phase transition counterpart in solid hydrogen under high pressure allows us to reveal partially the character of the new structure. The ionized phase includes complex cluster ions. Van der Waals loops are of abnormal inverted form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.