Abstract

The IgG1 kappa human monoclonal antibody (HMab), F105 reacts with a discontinuous epitope on the CD4 binding site (CD4BS) of human immunodeficiency virus type 1 (HIV-1)/gp120 and has broad neutralizing activity. F105 HMab (60 mg/kg bolus) was administered intravenously to four monkeys and serum was collected at intervals to determine pharmacokinetics in a primate model. Average serum F105 concentrations, as determined by enzyme-linked immunosorbent assay, were analyzed with MINSQ software using a two-compartment, first-order model. The half-life for the alpha phase of the distribution curve is 6.7 h and for the beta elimination phase, 9.6 days. The volume of distribution is 0.65 L/kg and the rate of clearance 2 ml/kg/h. Serum levels of 1.3-1.6 mg/ml of F105 were maintained for 24 h. When monkey serum from day 15 postdose was tested, total serum F105 was 230 +/- 79 micrograms/ml and was immunoreactive with cells infected with the MN and IIIB strains of HIV-1 as determined by flow cytometry. Binding activity was identical to that obtained with stock F105 HMab. Identical neutralizing activity between the injected and uninjected antibody was also observed. Thus, serum neutralizing titers (90%) of 1:2000 at peak and 1:30 at day 15 postdose for MN virus were observed. These data indicate that high in vivo levels of HMab F105 can be attained by single bolus administration with full retention of biological activity. Of importance, levels of antibody necessary for effective neutralization can be achieved and maintained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.