Abstract
The large range of plasma currents (Ip = 0.2–1.6 MA) and feedback-controlled magnetic boundary conditions of the RFX-mod experiment make it well suited to performing scaling studies. The assessment of such scaling, in particular those on temperature and energy confinement, is crucial both for improving the operating reversed-field pinch (RFP) devices and for validating the RFP configuration as a candidate for the future fusion reactors. For such a purpose scaling laws for magnetic fluctuations, temperature and energy confinement have been evaluated in stationary operation. RFX-mod scaling laws have been compared with those obtained from other RFP devices and numerical simulations. The role of the magnetic boundary has been analysed, comparing discharges performed with different active control schemes of the edge radial magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.