Abstract

We investigated whether plasma nitros(yl)ated species (RXNOs) that mediate systemic nitric oxide (NO) bioactivity are depleted in individuals with cardiovascular risk factors and endothelial dysfunction. Endothelium-derived NO acts not only as a regional messenger but exerts significant systemic effects via formation of circulating RXNOs delivering NO to sites of impaired production. Endothelial function was assessed in 68 patients with one to four major cardiovascular risk factors (RF) and 39 healthy control subjects (C) by measurement of flow-mediated dilation (FMD) of the brachial artery using high-resolution ultrasound. In parallel, plasma RXNOs were determined by reductive gas phase chemiluminescence. Increasing numbers of risk factors were accompanied by a progressive decrease in FMD: 6.5 +/- 0.4% (C); 4.7 +/- 0.5% (one RF); 2.8 +/- 0.4% (two RF); 2.2 +/- 0.4% (three RF); and 1.0 +/- 0.3% (four RF). Progressively impaired vascular function was associated with a concomitant decrease in plasma RXNOs (p < 0.01): 39 +/- 2 nmol/l (C); 30 +/- 2 nmol/l (one RF); 24 +/- 3 nmol/l (two RF); 22 +/- 3 nmol/l (three RF); and 15 +/- 2 nmol/l (four RF), with univariate correlation between FMD and RXNO (r = 0.41, p < 0.001). In a multivariate regression model, RXNO was an independent predictor of endothelial function. Endothelial dysfunction in patients with cardiovascular risk factors is associated with decreased levels of circulating RXNOs. Plasma RXNOs may be diagnostically useful markers of NO bioavailability and a surrogate index of endothelial function. Whether the observed decrease in concentration reflects impaired NO formation, accelerated decomposition, and/or consumption of RXNOs and whether these processes play a causal role in the pathophysiology of arteriosclerosis remain to be investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.