Abstract

Poly(methyl methacrylate) (PMMA) substrates were nanotextured through treatment in oxygen plasma to create substrates with increased surface area for protein microarray applications. Conditions of plasma treatment were found for maximum uniform protein adsorption on these nanotextured PMMA surfaces. Similar results were obtained using both a high-density plasma (HDP) and a low-density reactive ion etcher (RIE), suggesting independence from the plasma reactor type. The protein binding was evaluated by studying the adsorption of two model proteins, namely, biotinylated bovine serum albumin (b-BSA) and rabbit gamma-globulins (RgG). The immobilization of these proteins onto the surfaces was quantitatively determined through reaction with fluorescently labeled binding molecules. It was found that the adsorption of both proteins was increased up to 6-fold with plasma treatment compared to untreated surfaces and up to 4-fold compared to epoxy-coated glass slides. The sensitivity of detection was improved by 2 orders of magnitude. Moreover, highly homogeneous protein spots were created on optimized plasma-nanotextured surfaces through deposition with an automated microarray spotter, revealing the potential of plasma-nanotextured surfaces as protein microarray substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.