Abstract

A two-dimensional fluid/Monte Carlo (MC) simulation model was developed to study plasma molding over surface topography. The radio frequency (RF) sheath potential evolution, ion density, and flux profiles over the surface were predicted with a self-consistent fluid simulation. The trajectories of ions and energetic neutrals (resulting by ion neutralization on surfaces or charge exchange collisions in the gas phase) were then followed with a MC simulation. In this paper, ion flow, energy and angular distributions of ions, and energetic neutrals bombarding an otherwise planar surface with a step are reported. The step height was comparable to the sheath thickness for the RF high-density plasma considered. As one approaches the step sidewall, the ion flux decreases, the ion energy distribution narrows, and the ion impact angle increases drastically. The ion impact angle at the foot of the step scales with the ratio of sheath thickness to step height. The energetic neutral flux is found to be comparable to the ion flux on the horizontal surface near the step sidewall. Simulation results are in good agreement with experimental data on ion flux and ion energy and angular distributions near the step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.