Abstract

To study the potential value and specificity of plasma miR-216a as a marker for pancreatic injury. Two rat models were applied in this article: L-arginine-induced acute pancreatitis was used as one model to explore the potential value of plasma miR-216a for detection of pancreatic injury; nonlethal sepsis induced in rats by single puncture cecal ligation and puncture (CLP) was used as the other model to evaluate the specificity of plasma miR-216a compared with two commonly used markers (amylase and lipase) for acute pancreatitis. Plasmas were sampled from rats at indicated time points and total RNA was isolated. Real-Time Quantitative reverse transcriptase-polymerase chain reaction was used to quantify miR-216a in plasmas. In the acute pancreatitis model, among five time points at which plasmas were sampled, miR-216a concentrations were significantly elevated 24 h after arginine administration and remained significantly increased until 48 h after operation (compared with 0 h time point, P < 0.01, Kruskal-Wallis Test). In the CLP model, plasma amylase and lipase, two commonly used biomarkers for acute pancreatitis, were significantly elevated 24 h after operation (compared with 0 h time point, P < 0.01 and 0.05 respectively, Pairwise Bonferroni corrected t-tests), while miR-216a remained undetectable among four tested time points. Our article showed for the first time that plasma miR-216a might serve as a candidate marker of pancreatic injury with novel specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.