Abstract
BackgroundRapid kidney function decline (RKFD) is a main clinical feature of early chronic kidney disease (CKD) in type 2 diabetes (T2D). Environmental and genetic factors influencing RKFD remain inadequately elucidated. ObjectivesThis study aimed to examine the associations of metals with RKFD among T2D and to further investigate the effect of metal mixtures on RKFD with the modifying effect of genetic susceptibility. MethodsThis study included 2209 people with T2D (1942 had genotyping data) free of CKD at baseline from the Dongfeng-Tongji cohort. We used inductively coupled plasma-mass spectrometry (ICP-MS) to measure 23 metals in baseline plasma. Using elastic net (ENET), multivariate logistic regression, and Bayesian kernel machine regression (BKMR) model, we examined independent associations of multiple metals with RKFD. We calculated the environmental risk score (ERS) to assess the effects of metal mixtures on RKFD and the genetic risk score (GRS) to assess genetic susceptibility. RKFD was defined as estimated glomerular filtration rate (eGFR) loss > 3 mL/min/1.73 m2/year. ResultsDuring a median of 9.8 years follow-up, 262 participants developed RKFD. Aluminum, vanadium, zinc, selenium, rubidium, tin, barium, and tungsten were screened from ENET. In multivariate logistic models, vanadium, selenium, and tungsten were negatively associated with RKFD, while zinc, tin, and rubidium were positively associated. The BKMR showed a nonlinear association of vanadium and rubidium with RKFD and interactions between metals (barium‑vanadium, barium‑rubidium). The ERS was positive associated with RKFD (per SD increase in ERS, OR = 1.94, 95% CI: 1.66, 2.27). No significant interaction between ERS and GRS was observed on RKFD, however, participants in the highest ERS and GRS group had the highest RKFD risk. ConclusionVanadium and rubidium were associated with RKFD in T2D. Metal mixtures was associated with an increased risk of RKFD in T2D, particularly in those at high genetic risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.