Abstract

Recently, numerous studies have reported on different predictive models of disease severity in COVID-19 patients. Herein, we propose a highly predictive model of disease severity by integrating routine laboratory findings and plasma metabolites including cytosine as a potential biomarker of COVID-19 disease severity. One model was developed and internally validated on the basis of ROC-AUC values. The predictive accuracy of the model was 0.996 (95% CI: 0.989 to 1.000) with an optimal cut-off risk score of 3 from among 6 biomarkers including five lab findings (D-dimer, ferritin, neutrophil counts, Hp, and sTfR) and one metabolite (cytosine). The model is of high predictive power, needs a small number of variables that can be acquired at minimal cost and effort, and can be applied independent of non-empirical clinical data. The metabolomics profiling data and the modeling work stemming from it, as presented here, could further explain the cause of COVID-19 disease prognosis and patient management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.