Abstract

Absolute orientations (sidedness) of plasma membrane vesicles obtained in highly purified fractions by preparative free-flow electrophoresis and by aqueous two-phase partition were determined based on ATPase latency and morphological criteria. Free-flow electrophoresis yielded two plasma membrane fractions. One, the least electronegative and designated fraction ;E,' was pure plasma membrane. The other, more electronegative and designated fraction ;C,' was heavily contaminated by various other cellular membranes. Plasma membrane vesicles from both fraction C and fraction E partitioned into the upper phase with aqueous two-phase partitioning. Purified plasma membrane obtained from microsomes by two-phase partition (upper phase) when subjected to free-flow electrophoresis also yielded two fractions, one fraction co-migrated with fraction C and another fraction co-migrated with fraction E. Both fractions exhibited an ATPase activity sensitive to vanadate and insensitive to nitrate and azide. ATPase activity was used as a structure-linked latency marker for the inner membrane surface. Concanavalin A binding (linked to peroxidase) was used as an imposed electron microscope marker for the outer membrane surface. Fraction E vesicles showed low ATPase latency (two-fold or less) and weak reactivity with concanavalin A peroxidase. In contrast, fraction C vesicles were characterized by much greater latencies upon detergent treatment (sevenfold) and a strong reaction with concanavalin A peroxidase. Two-phase partition as the initial procedure for plasma membrane isolation, yielded mixtures of vesicles of both inside out and right-side out orientation. Free-flow electrophoresis resolved the plasma membrane isolates into vesicles from fraction C which were right-side out (cytoplasmic side in), and vesicles from fraction E which were wrong-side out (cytoplasmic side out). Therefore, the two methods used in series, provided highly purified membrane preparations of apparently homogenous vesicles of opposite known absolute orientations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call